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1. MUMITION EXPENDITURE

In the previous progress report we indicated that the

Calder Salzer technique for inverting a Laplace Transform

Imposes inknovm conditions on the moments of the multi-munition

dosage d: stribution.

OV course, as Calder points out a direct use of the

Salzer sckheme would imply that all moments are infinite.----

Indeed it vould Imply that the total area under the "distribution"

is infinite. That Is if we assume that the Laplace Transform,,
'k b,

• (1) o(t) e'tDf(D)dD =Ibi" o . i• ' '

then the disage distrIbution is

k br -zF
(2) ((Dj =Z

"r-z. (r-l)!

Clearly if V(D) is given by (2) then

f f(D)dD
0

and f(D) cannot bzi a probability density. Actually Calder

uses the Laplace Trensform of the cumulative distribution function.,

so that one must replace f(D) in (1) and (2) by F(D). As he

points out

(3) P(D)- Y r

r2 (r-l)'



implies that F(co) = and not 1, as we must have for any

cumulative distribution functiorn. Differentiating (3) we have

(4) f (D) = br r 2I_
r-2 (r-2)!

from which we draw the same conclusion. Another difficulty

with (2) is that the polynomial goe. through (0,0). Thus

it implies zero probability of obtaining dosages in the neigh-

borhood of zero.

Calder handles both objections as follows. To get

aroýnd the non-zero probability of zero coverage-he truncates

the dosage distribution at the lower end. To get around the

unboundedness of the polynomial at D = he introduces a

scaling factor (so that the modified F(D) is bounded by 1),.

Thus, in effect he uses a different polynomial fit for each

D-valueo It is difficult to estimate the effect that this mod-

ification has on the original physical problem. However, it is

reasonable to assume that a family of polynomials can be made

to fit a function better than a single polynomial,

In addition, although the scaling technique enables one

to fit an F(D) with the property that F(D)-* 1 as D -- g

one wiould probably need a stronger scaling factor to guarantee

that all moments exist. One still has

3
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A t
Urn. f D f (D)dD c

A co 0

so that this method really implies that the moments of the

dosage distribution do not exist.

It should also be pointed out that the theoretical

Justification for fitting r(D) by a polynomial U related to

the Weierstrap Approximation Theorem which states that any con:-

tinuous function can be closely approximated by a polynomial in

D for real D satisfying 0 < a < D < b . Notice that this

theorem holds for functions over finite intervals, but that vie

are dealing with Laplace transforms which are integrals defined

over ma infinite range. We can then show that by using the un'.

o3caled Laplace Transform method it is not possible to "fit" the

bounded functions by a polynomial. To rigorize the scaling tech-

nique we need, a corrollary to the WeierstraJ Theorems which

shows that a sequence of polynomials will do the trick, The

Calder technique employs a sequence of polynomials, each of

which fits at one of the sequences of DIvalueso

_ In the last progress report (pc2) we wrote the Laplace Transformi
in terms of moments of the distribution. In analogy with the
moment generating function we should have used

S(t) = (-1)i t
1=0 1!

The (- 1 )I was inadvertently omitted.

4I
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'?igure 1o Polynomial approximation to F(D)

We are now in the process of trying a less sophisticated

technique .than scaling to allow for the fact that a polynomial

is infinite at D * It consists in fitting thb polynomial

betwemen D - 0 and D = D and then arbitrarily approximating

F(D) .by

F(D) - 1 D>Do 0

SIf D 0is large enough so that we are really not interested in

the probability of getting dosages above Do and if our approx-

imation gives F(D) < 1 D < Do , this procedure may be satisfactory,

-5-



2. 'ATIJ2OSPUERIC DIFLS ION

In an attempt to sijmpJify the diffusion model treated

in those reports a version which depends on dimensionless para-

meters io proposed, As a by-product of this new prooedix..r wce

are enabled to obtain a family of depositions by nui.tiplying by

silple expressions the result of integrationos, similar to (Ic,)

and (11) ;f the previous progress report,
e

Our deposition of agent, R. as a function of distance

do.mwind, x was given by.

a 2

(5) K(x) = A f h(O)t(x,a2 df

.where

(6) h(•tt) = 1 exp(-

ýir)2 t 2t 2

:7) t(x,D) 1 P e-f/x

r(l+p)

(s)p =c11

We now make two changes. In place of x we consider

the dimensionless parameter x/f For any value of f it Is

then a simple matter to treat K as a function of x. Secondly

the integration is performed with p. rather than 0 as the

variable of integration. Thus



(9) h(p;g,t) v(r,p)dp = M(r;9t) say
Ac 0

where

(10) r = X/f

h= 1 exp[j n+ (2na-g)]J]
h(p;cp•t) (i t 2t2

(11)

_ exp[- 2t 2 ))2

(12) p - 4nc

(13) v(rp) = r( +4p) rl+p er l "

The meteorological parameters are incorporated in A, c

and f = Q/(Ac). Thus, each curve M can be easily transformed

by (10), (11) and (12) to a set of curves, K, for specific

meteorological conditipns and particle size distributions. The

conditions treated in previous reports are given by A = .1674 SM cm
m sec

and the values in Table 1. It should be noted that in all

these cases c , the mean of the "normal" distribution in (!!)

,as negative. Since p , rather than Ii seems to be the per-

tinent "mean" to consider in evaluating K it w.as decided to

compute some values for 9-=0 and q=i , where we expect diffusion

"-7-



to play a larger role. For this reason DI of (9) is being

evaluated on the IM 650 for the parameters of Table 2 by

Mr. Daniel H. Salkoff,, who performed the previous calculations.

fI c9 anc t•

514 4.06 .08603 1.7595 .53 + 2.30

514 3.26 .08603 1.7595 .57 + #150

1028 4.06 .17206 2.453 .53 + 1o61

1028 3.26 .17206 2.453 .57 + .81

Table 1. Parameters in previous deposition calculations.,

9 t Pl P2

0 .3 .40 2.5

0 0,55 .19 5.2

o 1.o .05 20.0

-1 .55 - -7if

Table 2. Values of parameters being used in. computing M as

given in Equation (14), where pi e 9+t3-

_ 8-



This new procedure outs out the necessity for evaluating

L , the integral with p and f (or r) replaced by 2p, 2f

(or." ff. If one actually evaluated (9) exactly, the change in

these parameters would merely ohange the integrating grid and

give different values of distance doin.irnd. However, we, of

course, replace (9) by

P2

PI

where p1  and p2  are chosen so that the contribution to X,

of values where P 2 and below p , are negligible. Replacing

p by 2p would also change the limits of integration. thereby

omitting important values of p and replacing them by values

which make virtually no contribution to M1

An outline of a new stochastic model of turbulent

diffusion is given in an appendix to this report. Of course,

the details are yet to be programmed for computation on a digital

computer, and these results would have to be compared with field

test data to see how well the model fits.

Leon H. Herbach
Project Director

-9-
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A stochastic model of turbulent diffusion

The purpose of this memorandum is to formulate a new model

of turbulent diffusion by a simulation of the physical process,.

The model will describe the process during a fixed instant .f
"0 it may be described

time, In more pictiuxesque language,,as being a "snapshot" of

the physical process, It is hoped in later reports to describe

a continuous model for the same physical phenomena.

It is assumed that an instantaneous point source located

a t X Xo 0 0 , y= yO = 0 originates as a "MmassU which

miy be described mathematically by the delta function, or unit

impualse .2unction, % 6(x,y) where 6(xy) is defined by

6(X,y) = 0 if' x rO or 40

7) ~U (XY 0 ,= and y=0

n ~r f gxly) =Q.0 
0,O ,(.

Our next as.sumption is that '-he mass will difAuase according

,to a "random walklk Process *;hose mechanism is desc3ibed below,

We shall be par-ticularly Interested in studying the correlation

f•'tion•. of thfe stochastic process involved. These correlation

fu:Pction, will be used to describe the rate of diffusion, and*

th!e general features of the pro.ess wecnism, The coielaticn



13.2

function as generated will consider the relations between fixel

discrete points.

It is assumed that the "mass" undergoes a splitting rwhlch

gives rise to two "daughter" masses. Blach of these daughters

_ a total "mass" V/2 and is center~ed at the points

42)er X(i) and x .( = +)61 0 + l 01=2

whera e ( ') and 6 ( ±) are normally and independently distributed

uith means zero and variances U12

The "splitting'w process continu(s in this fashion except

that the variances of the newl els and 6's are o2
2ith a < 2 < 2 < until we arrive

..2.1,,5, w. 5 '4h3 2 1 J u w

at the points xyi) , ') where il1,2,...,32• ) The

process is illustrated in Figure 1. That is, the process con-.

tinues until we have generated 25 or 32 points.

The effect of wind can be taken into account by this model.

If a constant wind is blowing from some direction, its effect

on the distribution of the sample points can be allowed for

by asa1ming that the mean of the first points e. , 6, (i=1,2)

aUre non-zero. For example if the wind is from the SW we may

At each of the 32 points which have been generated we

now conceive of the mass, O25 as being distributed according

i1
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,! /

(2) (2)~/ /

/X2 (s2 (2))

(3))

22 22 -4 4 () x(x 2 I'Y

FIgtire 1. The Splitting Process
" enerating the Random
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13.

to a squared exponential. This is the limiting result if we

continue the splitting ad •infitum with saiall variances.

Thus., the density at any point (u,v) In space is

32

( expr& ((u - X5 + (v- y
1=1, (2w)cv!22

where the points are generated in the following manner;

(x01 y ) (41) , Yl ) , (4,2) (2)

(4(2) a Y2)) (4(3) Y(3)) 0 (x4~) s,()

2 .2,. 3 "i YS,

(x(3) (.3) (x() ()) (46) ~( 6))

(x() y4)) (47) (7M) (8) p,
2 2 "i .3 ))Y

The reason for using a squared exponential as the lim-iting

di.st'ibution for the "splitting" of steps 6 to infinity.,

& ji± the ý- In is nguiar, U', -!s

I Iny reI1on after an ifinitc III InIL( W,

r-Ls' 2gi,-vo b-~~;at thec circular rozwa Itegira.TT avri:f In

fJ ror.- the I'My's, t;*.e Varcmel of ubsaqubt B":epr - cax

ýIAtte v-:.ý1ab:llity in tlheae lsltter steps is neligible

uV'-,h1 the. o:wtlier steps. Actual calculatiqTns will indicate whe,,Jhn
-13
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a good approximtion will be obtained if this "averaging" is done

after step 5, 6, or some other number.

It should also be noted that we have still not taken

time into account, since all stages In the splitting process

are assumed to lake place instantaneously. Time Is considered

by replacing 02 in (3) by oef(t) , Where r(t) is an in-

creasing function of tinm. The first function to be considered

will be f(t)- t.

No• we may consider the correlation structure. It

may be noted that the als which must be used here will have

to be obtained experimentally. The correlation structure for

the first two steps is given as

0-~ 0

(9) 0

In considering the diagram shown in Figure 2 it Is noted that

if the correlation structure Is given in the following manner

of describing the splitting process we have

(10) x = x - , y = yo 0 with 0

as the splitting continues we obtain at the first step the

following via , where x0 - first mass and x1 , the second*

mass, considering all possible combinations

40 14
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(J•o,Vo) 13.6
xj I15.6

(2" '•) Ccj

('3) C41i

%j

Fge 2. Development of" Covaz'lance Structure

- 15 -
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Xo0 x01  X1O Xli

0 0

(ii) '+ OR 0 0

eo -;• Ca 01
0 1 o• + o!

and at the next step we obtain the following:

X000 Xo01 X010 x011 X100

0o + 02 2 00° + 02 020•
(12 +20 002 0S(12) @o+ 0 2 + CT 002 a2 0

00 1 2 0 1

2 0
09 +01 + 2

Now consider the oorrelations of these realizations:

(13) At R = ]. 002 I (Identity matrix)

iE2 0
R1  12" 22 0 0 20 E2

where 1 1

E2 =

- 16 -
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or
R1,EF 2* R 0 +Of1 2 " 2

(14) 2 00" "2 "E 2 +'alE 2 0 2

+ '11 1 2 @1

R2 2 =" "l + "V2 12"- " 1z2 •

It will be noted that the covariance matrix at any given

realization of the process gives the history of the "mass" up

to this point, and essentially describes the fact that a high

correlation will be found for points which lie in a close re-

lation physically to each other. While they have a low corre-

lation with the "mass" points which lie at some distance" from

each other. This is noted in Figure 2 and seems to agree with

the physical theory.

To end the matter of notation we will designate the points

at any given realization in their natural order. At the fifth

step we will number the realizations as x2 , C2 , ... ,x32

Of course, the details of this model still have to be wowvked

out, Among the problems to be Investigated are: (1) Mow can

oi-e obtain t-he mean variance and the distribution of dosage at

a point or set of points? (ii) What is the limiting distribution

of dosage at a point? If we drop squared exponentials unfo±'mly

over a large target the resulting distribution l c.d. We will

p)ombbly be involved with a distribution which is the sum of

c.d1s.


